Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The rapid increase in the volume and variety of terrestrial biosphere observations (i.e., remote sensing data and in situ measurements) offers a unique opportunity to derive ecological insights, refine process‐based models, and improve forecasting for decision support. However, despite their potential, ecological observations have primarily been used to benchmark process‐based models, as many past and current models lack the capability to directly integrate observations and their associated uncertainties for parameterization. In contrast, data assimilation frameworks such as the CARbon DAta MOdel fraMework (CARDAMOM) and its suite of process‐based models, known as the Data Assimilation Linked Ecosystem Carbon Model (DALEC), are specifically designed for model‐data fusion. This review, motivated by a recent CARDAMOM community workshop, examines the development and applications of CARDAMOM, with an emphasis on its role in advancing ecosystem process understanding. CARDAMOM employs a Bayesian approach, using a Markov Chain Monte Carlo algorithm to enable data‐driven calibration of DALEC parameters and initial states (i.e., carbon pool sizes) through observation operators. CARDAMOM's unique ability to retrieve localized model process parameters from diverse datasets—ranging from in situ measurements to global satellite observations—makes it a highly flexible tool for analyzing spatially variable ecosystem responses to environmental change. However, assimilating these data also presents challenges, including data quality issues that propagate into model skill, as well as trade‐offs between model complexity, parameter equifinality, and predictive performance. We discuss potential solutions to these challenges, such as reducing parameter equifinality by incorporating new observations. This review also offers community recommendations for incorporating emerging datasets, integrating machine learning techniques, strengthening collaboration with remote sensing, field, and modeling communities, and expanding CARDAMOM's relevance for localized ecosystem monitoring and decision‐making. CARDAMOM enables a deep, mechanistic understanding of terrestrial ecosystem dynamics that cannot be achieved through empirical analyses of observational datasets or weakly constrained models alone.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Large across‐model spread in simulating land carbon (C) dynamics has been ubiquitously demonstrated in model intercomparison projects (MIPs), and became a major impediment in advancing climate change prediction. Thus, it is imperative to identify underlying sources of the spread. Here, we used a novel matrix approach to analytically pin down the sources of across‐model spread in transient peatland C dynamics in response to a factorial combination of two atmospheric CO 2 levels and five temperature levels. We developed a matrix‐based MIP by converting the C cycle module of eight land models (i.e., TEM, CENTURY4, DALEC2, TECO, FBDC, CASA, CLM4.5 and ORCHIDEE) into eight matrix models. While the model average of ecosystem C storage was comparable to the measurement, the simulation differed largely among models, mainly due to inter‐model difference in baseline C residence time. Models generally overestimated net ecosystem production (NEP), with a large spread that was mainly attributed to inter‐model difference in environmental scalar. Based on the sources of spreads identified, we sequentially standardized model parameters to shrink simulated ecosystem C storage and NEP to almost none. Models generally captured the observed negative response of NEP to warming, but differed largely in the magnitude of response, due to differences in baseline C residence time and temperature sensitivity of decomposition. While there was a lack of response of NEP to elevated CO 2 (eCO 2 ) concentrations in the measurements, simulated NEP responded positively to eCO 2 concentrations in most models, due to the positive responses of simulated net primary production. Our study used one case study in Minnesota peatland to demonstrate that the sources of across‐model spreads in simulating transient C dynamics can be precisely traced to model structures and parameters, regardless of their complexity, given the protocol that all the matrix models were driven by the same gross primary production and environmental variables.more » « less
-
Abstract Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.more » « less
-
Abstract The new TROPOspheric Monitoring Instrument (TROPOMI) solar‐induced chlorophyll fluorescence (SIF) data provides new opportunities to corroborate and improve global photosynthesis estimates. Here we report the spatiotemporal consistency between TROPOMI SIF and vegetation indices from the bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard MODIS (MOD09) surface reflectance products, estimates of absorbed photosynthetically active radiation by chlorophyll (APARchl) derived from National Centers for Environmental Prediction Reanalysis‐2 (NCEP2), MODIS MCD18, and European Reanalysis (ERA5) data, and two GPP products (GPPVPMand GPPMOD17). We find (a) non‐adjusted VIs were more highly correlated with SIF at mid and high latitude than BRDF‐adjusted VIs, but were less correlated in the tropics, (b) negligible differences in the correlation between SIF and non‐adjusted NIRv and EVI, but BRDF‐adjusted NIRv had higher correlations with SIF at mid to high latitude than BRDF‐adjusted EVI but lower correlations in the tropics, (c) choice of PAR data set likely to cause substantial differences in global and regional GPP estimates and the correlation between modeled GPP and SIF, (d) SIF was more highly correlated with APARchlat high to mid latitude than EVI but more highly correlated with EVI at lower latitudes, and (e) GPPVPMis more highly correlated with SIF than GPPMOD17, except in sub‐Sahara Africa. Our results highlight that spaceborne photosynthesis would likely be improved by using a non‐linear response to PAR and that the fundamental differences between the vegetation indices and PAR data sets are likely to yield important differences in global and regional estimates of photosynthesis.more » « less
An official website of the United States government
